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Abstract

Significant distinctions in phenological properties
exist between plant comﬁunities. These differingv
characteristics can be the result éf varying plant types,
environmental stressors, or both of theée factors. This paper
explores the ability of satellite remote sensing to determine
relative amounts of C; and C;'vegetative lifeforms contained
within a heterogeneous canopy based on their uniéue
phenological quelities.. Changes in the Structure and dynamics
of en environment, in this‘case a tallgrass prairie, can be
indicaters of even larger stressesvon the ecosystem. The C;
and C, plants of a tallgrass prairie, for example, have been
shown to be particularly sensitive tovenvironmental changes.
The ability to distinguish between these-lifeforms can be
complex due to the fact that they appear spectrally similar at
a single point in time. Other studies have proven this to be
possible using hand held, close range remote sensing
measurements with fine spatial resolution. However, the
ability to distinguish these lifeforms using imagery of
relatively coarse resolution has not yet beeﬁ exblored.
Twenty-six SPOT images from March to November of 1987 were
obtained for anaiysis. iPercentages of C; and C4.plants were
determined using discriminant function mixture models based on
metrics derived from the temporal trajectory of the Normalized
Difference Vegetation Index (NDVI). The percentages derived
fram satellite measurements were compared with data collected
on the ground. Classification accuracies.between 50%-60% were

obtained using the techniques-discuseed in the paper. The




results presented in this report seem to be a promising
indicator that determining amounts of C; and C, within a

canopy is possible using satellite remote sensing.
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Significant distinctiohs in phenological ﬁroperties
exist between plant communities. These differing
characteristics can be the result of varying plant types,
environmental stressors, or both of these factors. This paper
explores the ability of sétellite remote sehsing to determine
relative amounts of C, and C, vegetative lifeforms contained
within a heterogeneous canopy based on their unique
phenological qualities. Changes in the structure and dynamics
of an environment, in this case a tallgrass préirie, can be
indicators of even larger stresses on the ecosystem. The C;
and C, plants of a tallgrass pfairie, for example, have been
shown to be particularly sensitive to environmental changes.
The ability to distinguish between these lifeforms can be
complex due to the fact that they éppear spectrally similar at
a single point in time. Other studies have pfoven this to be
possible using handvhéld, close range remote sensiﬁg
measurements with fine spatial resolution. However, the
ability to distinguish these lifeforms using imagery of
relatively coarse resolution has not yet been explored.
Twenty-six SPOT images from March to November of 1987 were
obtained for analysis. Percentages of C, and C, plants were
determined using discriminant function mixture models based on
- metrics derived from the temporal trajectory of the Normalized
Difference Vegetation Index (NDVI). The percentages derived»
from satellite measurements were compared with data collected
on the ground. Classification accuracies between 50%-60% were

obtained using the techniques discussed in the paper. The




results presented in this report seem to be a promising
indicator that determining amounts of C, and C, within a

canopy is possible using satellite remote sensing.
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Introduction

The use of remote sensing by organizations, acadeﬁia,
and individuals has exploded over the course of the last
several decades. In the earliest stages of development, few
people realized the benefits that remote senSingAhad to
offer. This technology has advanced rapidly during the last
20 years and is now widely used in a number of professions.
Satellite sensors are useful because they can provide
detailed information about rather large geographic areas.
Satellite images are routinely used to obtain thematic
information about the earth’s surface such as temperature,
vegetative cover; and soil moisture.

One of the more common applications of remotely sensed
images is to obtain information about wvarious wvegetative
parameters such as biomass or vigor. This information can
be used as an indicator of the response of the biosphere to
a variety of earth systém disturbances (Fischer, 1994).
Determination of vegetativé parameters, though, can be a
complex process. It can be difficult to derive some of
these parameters from coarse resolution satellite data, or
when trying to extract them from a heterogeneous vegetated
canopy. The aim is often to extract information on a
smaller scale than the scale of observation. This is an

area of ongoing research in the field of remote sensing, and




will be a primary focus of this paper as well.

The objective of this study is to determine relative
amounts of C, and>C4 vegetative lifeforms contained within a
heterogeheous canopy in a tallgrass ptairie environment
using satellite imagery. Percentages derived from satellite
measurements will be compared with data collected on the
ground. The C; and C, lifeforms can be discriminated based
on their inherent phenological differences‘throughoutvthe
growing season. In Northeast Kansas C, species tend to be
invaders to a tallgrass prairie and thrive in the cooler
spring and fall months, whereas C, species are generally
native to a tallgrass prairie and thrive during the warmer
summer months {(Goodin and Henebry, 1997).

The unique photosynthetic pathways associated with C,
and C, vegetative lifeforms are manifested by physical
differences throughout the growing season. The
photosynthetic pathway describes a series of processes that
convert carbon dioxide into energy in plants. Waller and
Lewis (1979) have identified C; and C, lifeforms as being
the two most important photosynthetic pathways.

Five characteristics have been widely used to classify
yegetation according to the photosynthetic pathway. These
include: (1) photosynthetic products, (2) CO, compensation

~and photorespiration, (3) oxygen suppression, (4) leaf




anatomy; and (5) carbon isotope discrimination (Waller and
Lewis, 1979). The specifics of these characteristics will
not be expanded on for the purposes of this project. Waller
and Lewis (1979) present a detailed discussion of this
matter. It is simply important to note fhat C, ahd C,
liféforms have some unique properties.

In addition to these five.;haracteristics, C, and C,
vegetatibn can be discriminated based on characteristics of
the temboral trajectories of the Normalized Difference
Vegetation Index (NDVI) provided - by satellite imagery.:
Vegetation that exhibit a C; photosynthetic pathway.
generally green up, or are more vigorous, during both the
early and later parts of the growing season. Vegetation |
characterized by the C, pathway is more vigorous in the
warmer mid—;ummer months. The relative amount of végetati&e
vigor can be estimated using the NDVI. On examination of
several NDVI trajectories from the data in this project, it
appears that sites with low C; content alsorreach higher
NDVI'values than those with high C; content. Transects with
low C; content seem to reach certain percentages of
cumulative NDVI earlier in the year as well.

The marked differences betweeh C; and C, plants can
help to explain aspects of structure in terrestrial

ecosystems and the importance of warm season and cool season




plant classification in range management (Waller and Lewis,
1979). It is important to monitor the changes that occur in
a tallgrass prairie environment. The same holds true for
other ecosystems as well. By understanding the changes that
take place in these particular environments, scientists and
resource mangers will be able to care for them more
effectively. Changes in the structure and dynamics of an
environment, in this case a tallgrass prairie, can be
indicators of even larger stresses on the ecosysten. The C,
and C, vegetative lifeforms of a taligrass prairie, for
example, have been shown to be particularly sensitive to

environmental changes.

Literature Review

A critical aspect of this report are the phenological
characteristics of C; and C, lifeforms. “When planning to
study phenoiogy with satellite sensors, the questions ofb
resolution and sampling design become apparent” (Fleischman
and Walsh 1991). It is‘very important that the spatial,
spéctral, radiometric, and temporal resolution of the sensor
are sufficient to detect the sometimes subtle changes of a
vegetative canopy over thé course of a growing season. This
is critical if classification of plant species is based on

differing phenology. Collins (1978) used narrow band




airbornebinstrumentation to sense phenological responses.
Collins was effectively able to show phenological change
between different species (Fleischmann and Walsh, 1991). It
is this ability to distinguish among different vegetation
types that has been relied upon in other studies.

The use of vegetation indices to detect phenological
changes has received increased attention in recent years.
The objective of vegetation indices is to derive information
on the nature and state of vegetation by using various
wavélengths selecﬁed to provide a strong signal from the
vegetation, and at the same time contrast with background
elements such as soil (Malingreau, 1989). The NDVI is one
of the more widely used vegetatioﬁ indices. It is defined
as the ratio of the difference between the near infrared aﬁd
red reflectances to their sum, (NIR-R)/(NIR+R). This
particular vegetation index has the benefit of normalizing
the differences in spectral reflectance. |

There have been numerous studies that éttempt to relate
seasonal NDVI trajectories to cover type. Many of these
studies deal with the problem of accurately classifying
vegetation types that may appear to be spectrally similar at
a single point in time, but are distinguishable baséd on
their seésonal trajectories of NDVI, or other vegetation

index ( Wiegand and Richardson 1987; Fleischamn and Walsh




1991; Kremer and Running 1993; Fischer 1994; Lascassies et
al. 1994; Reed et al. 1994; DeFries et al 1995; Goodin and
Henebry, 1997). Using NDVI alone has not'always proven to
be the most effective technique for distinguishing among
vegetation.

Other studies examihe the relation between different
vegetation indices and their ability to distinguish among
cover types. It has been shewn that, in some circumstances,
a Relaxation Vegetation Index (RVI) is a better predictor of
percentage plant cover than NDVI alone (Zhuang et. al.,
1993). Although the ability of both the NDVI and RVI were
found to be reasonably good predictors of percentage plant
cover, RVI did prove to be a slightly better indicator in
this particular study.

Oleson (1995) present a technique for extracting
subpixel cover type reflectances from the mixed pixels of
coarse spatial resolution data. They use weights
representing the proportions of cover types within the mixed
pixels and spectral band reflectances in multiple linear
regression analysis to extract mean cover type reflectances.
They determined that the accuracy of retrieved reflectances
is most sensitive to errors in the coarse resolution data
and least sensitive to errors in the weights.

DeFries, Hansen, and Townshend (1995) examined the use




" of metrics derived from the NDVI temporal profile, as well
as metrics derived from observations in red, infrared, and
thermal bands to improve discrimination between 12 différent
cover types. They determined that some of the best metrics
for discriminating cover types were mean NDVI, maximum NDVI
and NDVI amplitude.

Reed and others (19§4) also developed a series of
metrics that were used to used to discriminate among cover
types. They developed 12 metrics which are closely tied to
key phenologic events. These measures include the onset of
green up, time of peak NDVI, maximum NDVI, rate of green up,
rate of senescence, and integrated NDVI. Their analysis
showed a strong relation between the satellite derived
metrics and predicted‘phenologiéal characteristics.

Other investigators have also used an integratéd NDVI
approach, and have proved that this profile is a rather
strong predictor éf cover type. The integrated approach
actually proved more accurate than the non-integrated
technique (Kremér and Running, 1993; Henebry and Goodin,
1997). The advantage of using an integrated NDVI curve is
that it enhances both minor seasonal differences, as well as
overall variation among different vegetative signatures
(Kremer and Running 1993). Generally the NDVI in any of the

various forms has shown to be effective for distinguishing




among cover types in a heterogeneous canopy, or within a
pixel. An integrated NDVI approach will be used for this
report based on the indication that this technique can more

effectively distinguish vegetation than NDVI alone.

Study Area

The Konza Prairie Research Natural Area (KPRNA) is a
3487 ha area located about 10km south of Manhattan, Kansas
(Henebry 1993). This area is operated in part by Kansas
State University and is used extensively for research by
“scientists and students. The Konza Prairie is in the Flint
Hills, a narrow band of rolling hills that stretch from near
the northern border of Kansas, south into Oklahoma. Henebry
(1993) notes that erosion of underlying Permian limestone
and shale sediments formed the hills, which are
_characterized by steep slopes, and flat ridges. The rugged
topography of the area discouraged any widespread
cultivation, and the vegetation is predominately native.
The vegetation is dominated by big bluestem, little
bluestem, indiangrass, and switchgrass. Oak and elm trees
cover about 6% of KPRNA and are primarilykfound along stream
channels (Henebry 1993).

The climate in the region is fairly typical of the

Central Great Plains. Summers are rather hot, and winters




can be very cold. Winds throughout the year can be strong.
The average maximum and minimum temperatureé for January are
around 8.0 C and 3.0 C, énd for July are near 33.0 C and
20.0 C (Abrams and Hulbert 1986). Average precipitation is
835 mm, with approximately 70% occurring during the warmest
6 months (Abrams and Hulbert 1986). Annual precipitation,
however, is highly variable from year to year.

A fire management plan was introduced across the KPRNA
in 1971 (Gibson and Hulbert 1987). This plan placed
watersheds under burning schedules of 1,2,4, and 10 year
intervals. Other watersheds, however, are left unburned.
In October of 1987, bison were reintroduced into 5

watersheds totaling approximately 450 ha (Henebry 1993).

Data Description and Quality:

| A series of 26 satellite images from the growing season
of 1987 were acquired for analysis. These images were used
to produce temporal trajectories of NDVI for‘72 transects
located throﬁghout the Konza Prairie. Relative amounts of
C, and C, vegetative lifeforms will be determined based on
metrics derived from these trajectories. SPOT scenes
ranging from March to November were obtained from the‘First
ISCLP Field Experiment (FIFE) compact disk #5; FIFE was an

in-depth study conducted in a 15 square kilometer area south




of Manhattan from 1987 to 1989. The underlying purpose of
the research, which was funded by NASA, was to determine the
feasibility of using remotely sensed data to collect
information aboﬁt biophysical propérties of the earth’s
surface. This study produced volumes of data which are
available to the public.

All of the images obtained from the FIFE disk have been
extensively preprocessed using a number of techniques. All
scenes have been atmospherically corrected, converted to
reflectance, transformed to NDVI( and registered to grodnd
control points. Required images were simply decompressed
from the disk having already been converted to NDVI and
registered to the UTM coordinate system. All images were
resampled from 20 meter spatiél resolution to 30 meter
resolution when they were georeferenced. A complete
description of all preprocessing procedures can be accessed
from the FIFE on-line documentation iﬁcluded with the
compact disk.

The northwest corner of the images corresponds to UTM
coordinates of 4,334,000 Northing and 705,000 Easting in UTM
zone 14. The FIFE information syétéﬁ staff conducted
guality checks throughout the produdtion process. ACCOrding
to the FIFE staff, the raw data selected for processing is

of generally high quality. Independent estimates by members
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of the FIFE staff have established that the correcting.
algorithms can produce reflectance values accurate to 1%
absolute. The final NDVI product presented on.the disk is
therefore a relatively accurate representation of the
surface state, both radiometrically and spatially.

Other data utilized for this project include vecto; and
raster GIS coverages of the Konza Prairie. The vector GIS
coveragé contained information on each‘individuai watershed
located within the Konza Prairie. The watersheds are
distinguished based on the experimental treatments utilized
by researchers. Treatments include variable burning,
grazing, and nitrogen applications. The vector GIS coverége
was used to identify watersheds of particular interest.
Transects were located in watersheds 001C, 020B, N20B, NO1B,
001D, NO04D, 004B, 004D, 0004F, 002D, and OOZC. A 30 meter
resolution raster layer was utilized to further stratify the
watersheds into uplands and bottomlands. |

Species composition data from the 72 transects located
fhroughout the area was an additional source of information.
This is very important for two primary reasons. First, a
subset of this information is used to generate
classification coefficients that will be used to classify
unknown cases. Secondly, these data were used to dévelop an

accuracy assessment of the final results of the

11




classification. All species composition data were recorded
by personnél of the Division of Biology at Kansas State
University. The purpose of the study conducted by thé
Division of Biology was to determine the canopy coverage and
frequency of each plant Species. From the data collected in
this study, species composition could be determined.for each
transect of interest. Sampling was coﬁducted on upland and
bottomland positions in watersheds 001C, 020B, N20B, NO1B,
001D, N04D, and 004B. Only Florence soil upland positions
were sampled in watersheds 004D, 004F, 002D, and 002C.

Four transects were established in each upland and
lowland positiOn; This reSearch design resulted in the
majority of the sampled watersheds containing 8 transects —
four on upland and four on bottomland sites. Five 10 square
meter circular plots are located on each 50 meter transect
at five meter intervals. Sampling is then conducted in each
of the five plots along every transect throughout the area.

To assess plant species composition all plant species
in the circular plots are recorded. On each plot, canopy
coverage of all species are recdrded according to the
following canopy coverage classes modified.from Daubenmire:
1. 0-1%; 2. 1-5%; 3. 5-25%; 4. 25-50%; 5. 50-75%; 6. 75-95%;
7. 95-100% (LTER data set PVC02). The primary investigators

identified canopy coverage as the area within the lines
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connecting the extremities of the plant canopy represented
by a particular species. Species were sampled in-mid to
late May, mid July, and September. Sites have been sampled
on a yearly basis dating back to the early 1980s. This
researcher was specifically interested in the species
composition data from 1987 as this corresponds to the
available imagery.

Despite the fact that all imagés were supposed to have
been completely preprocessed and free from defects, there
were several individual scenes Which were not acceptable for
various reasons. Obvious cloud contamination was evident on
4 of the images. This precluded these images from further
analysis. Three of the images were not correctly rectified.
This was very apparent when comparisoh was made with the
other images. These problems were an initial setback
because this left the entire month of May unrepresented by
an image. A simple image‘ﬁo image rectificatibn was
performed on a single uncorrected scene from the month of
May. The resulting RMS error was less than a pixel.

Seventeen SPOT scenes were eventually deemed acceptable
and included in the analysis. These images were imported
into Erdas Imagine and overlaid upon each other. This is
the process of stacking one image on top of the other. This

eventually resulted in a single image containing seventeen

13




bands — each band representing a different date of the 1987

growing season.

Methods:

It is important to generate temporal trajectoﬁies of
NDVI for eaéh of the 72 transects if relative émounts of C,4
and C, are to be determined based on metrics derived from.
the curve. ApproXimate locations of the transects were hand
drawn on a field map by the personnel conducting the species
composition research. The corresponding locations of these
transects on the compoéited image could be roughly estimated
from the information contained in the raster and vector GIS
files.

Although an exact agreement between the actual location
of the transect and the identified location on the image is
somewhat unlikely, the species composition data is believed
to be representative of the immediate surrbunding area as
well. Therefore, it is believed that a subset of the area
around each transect will be sufficient for this project.
Each of the 72 transects were subset using the Erdas Imagine
software. Areas of interest were used to produce temporal
trajectories of NDVI for each transect.

The percentage of C, and C, plants contained within the

heterogeneous canopies'of the 72 transects located in the
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various watersheds is determined using a procedure called
discriminate function mixture modeling. Bahdwar (1984) and
Goodin and Henebry (1997) have found this to be somewhat
effective for distinguishiﬁg cover types intermixed‘in a
heterogeneous canopy. These discriminant functions are
similar to multiple reéressions equations;

d= o, + 0% + 0LX, + ... o X,

Equations similar to these were developed that are
based on metrics derived from the cumulative NDVI curve
plotted against growing degree day (GDD) for areas of known
species composition. Growing Degree Day accumulations
involve the amount of accumulated heat in planfs and is
related to their stage of growth. This is often a.better
indicator of development than simply time of year due to
seasonal variations in temperature (Michigan State Extension
Service, 1997). Metrics were selected that will most
effectively distinguish between areas consisting of vafious
amounts of C, and C, plants. For example, an area consisting
of 20% C, plants would theoretically have a signifiéaﬁtly
different temporal préfile than an area with 80% C; plants.
Therefore, the Growing Degree Dayslat which Various
percentages of NDVI occur was also expected to vary
according to percentagé of C; and C,. It was found that the

differences associated with temporal profiles of transects
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containing various amounts of C, and C, will be
distinguishable using the SPOT satellite data.
Initially, the metrics ﬁsed to summarize individual

NDVI curves included GDD at which 20%, 50%, and 90% of

‘normalized integrated NDVI had accumulated. It is possible

that, due to the 30 meter spatial resolutibn of the images,
pixel contamination by biotic material not fitting the
classes of C; and C, could occur. This is increasingly
likely later in the growing season when C; and C, plants are
active in the study area. This might result in one or more
of the metrics being ineffective at distinguishing the
percentage class of C; and C;. If appéars that this may
have occurred in a number of transects used in this study at
times late iﬁ the growing season.

An additional metric was included in the analysis to
try and account for this problem. This metric attempted to
summarize the NDVI curve at a point early in the growing
season when only a single lifeform type was’presént. The
GDD when 35% of normalized integrated NDVI:- accumulated waé
determined. It appears that this improved classification
moderately.

Comparisons were then made between classifications
produced using various metriés(See Tables 1—5 for results).

Method I, II, and III all use metrics derived from the

16




temporal trajectories of NDVI developed from the composited
17 léyer image. In order to explore the effect of lower

frequency data on the accuracy of classification, methods IV

and V used metrics developed from only 10 images. This

resulted in a 10 layer composited image. These temporal
profiles were derived using approximately one image per
month throughout the length of the growing season.

Method I : GDD at 20%,50%,90%

Methoa’II : GDD at 20%,35%,50%,90%

Method III: GDD at 20%,35%,50%

Method IV : GDD at 20%,50%,90%(1 image/month)

Method V R GDD at 20%,35%,50% (1 image/month)

Integrated NDVI has been found to be a rather useful
measurement when analyzing vegetation characteristics using
remote sensing. Malingreéu notes that “as the NDVI
measurement is representative of a rate of photésynthetic
plant activity, its integration over time should tell us
more about the productive history of the plant” than other
methods (Malingreau, 1989). Expression of the integrated
NDVI curve can be éomewhat difficult and can been estimated
by the equation;

[ NDVI = NDVIxdays = X (NDVIxn)

where '‘n’ is the number of days in each period covered by an

17




NDVI measurement.

Growing degree day was calculated using information
from the Konza Prairie data server maintained by the
Division of Biology. A multitude of daily climatic
information is archivéd dating back to the early 1980s.
Growing degree day was calculated using a base femperature
of 4 degrees Celsius. The selection of a base temperature
is dependant upon the area of investigation; This is the
temperature at which growth takes place fot vegetation of a
particular‘érea. If the air temperature falls below the
baée temperafure then no degree days are accumulated.
Goodin and Henebry'(1997) have demonstrated the
effectiveness of using a base of 4 degrees in nearly
identical prairie conditions. Average daily temperature was
one of the variables included in the archived data and was
also used to calculate GDD. The formula used to calculate
GDD is as follows;

| GDD = X[ (Avg. Daily Temp.)- 4°C].

Temporal trajectories were developed for each of the 72
transects that plotted Cumulative Integrated NDVI against
GDD. Percentage of C; an C; lifeforms contained within each
transect was determined by classifying individual species
into their appropriate lifeform'category. Dominant species

found within the transects include C, lifeforms Poa
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pratensis and Agropyron smithii and C, lifeforms Andropogon
gerardii and Sorghastrum nuténs.

The use of discriminant mixture modeling for
classification requires that a subset of the data be used to
derive classification coefficients. A random selection‘of
36 of thé original 72 transects was used for this purpose.
The GDD at which 20%, 35%, 50%, and 90% of cumulative NDVI
occurred was determined for each of these transects using a
polynomial fitted piecewise to pass through the data. This
data was then subjected to a number of multivariate tests
inciuding Wilks’ Lambda, Pillai Trace, .and Hotelling-Lawley
Trace. These tests were used to ensure that Significant
differences existed between each class. If this was not the
case, there would have been little point in contiﬁuing to
develop discriminant scores. Classification coefficients
and discriminant scofes were calculated for each category
once it was determined that the multivariate tests were
_significant. Discriminant scores for four classes were
developed. These include (1)<5% C3, (2)5-25% C3, (3)25-50%

C3, (4)51-100% C3.

Results
An examination of the results of the classifications

using the various metrics reveals that all methods produced
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overall accuracies above 50% (Tables 1-5). All methods were

accurate to near the 60% level. Methods II, III, and V

produced results with the highest overall levels of accuracy

approaching 62%. Methods I and IV were very close with
overall accuracies of 59% respectively.

An important point tp note about classification
accuracies is the fact that even a completely random
assignment of cases to a particular class will produce a
certain percentage of correct values in the error matrix.
In certain instances, random assignments can result in a
relatively good apparent classification result. Although
the overall accuracy is a useful aid in understanding the
general effectiveness of a particular classification
technique( it does not‘indicate how much better this is than
a completely random assignment of classes.

The k statistic is a measure of the difference between
the level of accuracy of a particular classification and a
completely random classification. Lillesand and Kiefer
define the k statistic as follows:

k = observed .accuracy — chance adgreement
1 - chance agreement

Lillesand and Kiefer (1994) note that this statistic “serves
as an indicator of the extent to which the percentage
correct values of an error matrix are due to true versus

chance agreement.”
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When the k statistic is included in the analysis, more
variation can be seen between the techniques. The k
statistic ranges from a low of 32% for method Ii to a high
of 44% for method V. 1In other words, method V produced a
classification that is 44% better than random chance. An
apparently common trend in the results is that when the
metric associated with the GDD at which 35% of cumulative
NDVI is reached is included in analysis the accuracy of the

classification increases.

S

Category 0-5% 5-25% 25-50% >50%
0-5% " 5 1 1

5-25% 7 14 5

25-50% 2 1
>50% 1
User accuracy: 41.6% 93.3% 25% 50%

1 Total %correct: 59.5%
K-hat: 36.1%

There are several possible reasons why the inclusion of
this particular metric improves the results. One
explanation relates to the fact that there is a rather
small, but still important, percentage of biotic material
within the observed canopies that cannot be classified as C,

or C,. This could result in the distinct temporal

trajectories of C, and C, becoming mixed, or weakened, by
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other vegetative matter. This would likely occur towards

the mid to late part of the growing season when all
different lifeforms are present in the canopy. Therefore,
the indicated GDD at which 90% of NDVI accumulates could be
significantly affected by these other kinds of material.
However, during the early part of the growing season these
other lifeforms would likely not be as advanced.and could
not cause as much confusion betweeén classes as is apparently
the case later in the season.

When the classification of individual categories, or
the user’s accuracy, 1is considered, some interesting trends
seem to emerge. The accuracy of classes two and four were
consistently the highest of the group. Clesses'Z and 4
correspond to transecfs containing between 25% and 50% C,
and sites containing over 50& C;. It should be noted
however, that there were only a very small number of cases
to be categorized in cless 4. This was‘do to tﬁe small
number of transects of_this class in the original data.

—'

Category 0-5% 5-25% 25-50% >50%
0-5% 4

5-25% 8 15 6

,25-50%

>50% ‘ : 2 2
User accuracy: 33% 100% 0% 100%

Table 2: Classification Matrix for Method II
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Category 0-5% 5-25% 25-50% >50%
0-5% 9 4 2

5-25% : 1 11 4_

25-50% 2 1

>50% 1 2

. User accuracy: 75.0% 73.3% 12.5% 100%

Total %correct: 62.2%
K-hat: 43.6%

Table 3: Classification Matrix for Method III

Although not as accurate as classes 2 and‘4, class 1
generally achieved a'respectable user’s accuracy. Theée
ranged from a low of 33% using method iI to a high of 75%
using method‘III. Cases that belonged to this class were
most often incorrectly classified as belonging to class 2.
This is not necessarily a surprise'as many of the cases
classified were borderline between class 1 and 2.

Class 3 was routinely incorrectly classified using all
methods but number IV. Method IV yielded a uéer’s accuracy
of 87.5% for this particular categbry. No other method
yielded results higher than 25% for this class. The reasons
for this are not clear at this time. Howeﬁer, the temporal
trajectories used in the classification were effectively
smoothed by using fewer images in the analysis as compared
to other methods. Method V, though, which utilized the same

number of images did not achieve a user’s accuracy as high
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for class 3.

Category 0-5% 5-25% 25-50% >50%
0-5% 8 5 1

5-25% 4 6

25-50% 4 7 1
>50% 1

User accuracy: 66.7% 40% 87.5% 50%

Total %correct: 59.5%
K-hat: 41.7%

Table 4: Classification Matrix for Method IV

Category 0-5% 5-25% 25-50% >50%
0-5% 8 2

5-25% 4 11 4

25-50% 1 2

>50% 1 2 2

User accuracy: 66.7% 73.3% 25% 100%

Total %correct: 62.2%

K-hat: 44.3%
—
Table 5: Classification Matrix for Method V

Although the results are somewhat variable and trends

are difficult to establish, all methods classified the cases

into their appropriate categories better than simple random

The majority of cases that were incorrectly

classified were assigned to a contiguous class. This is in

agreement with what Goodin and Henebry found in their
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research. This seems to be a promising indieation that this
technique is able to detect differences in the temporal
trajectories of the NDVI curve and relate them to percentage
C, lifeform present.

It appears from this limited fesearch that no
significant degradation of accuracy results when the number
of images used for analysis is decreased. In fact, the
overall accuracy, k statistic, and user’s accuracy are all
guite high with metrics derived from lower frequency data.
The inclusion of the metric associated with GDD at 35%
appears to improve classification slightly. This may be due
to the reasons already diseussed. However,fmore research

would obviously need to be done on this matter.

Conclusions

The purpose of this report was to determine the
relative amounts of C, and C, lifeforms present in a
heterogeneous canopy. Goodin and Henebry have shown that
this is possible using close range remote sensing
measurements of fine spatial resolution. However, the
ability to distinguish 1ifeforms contained within a 30 meter
pixel was unclear. This report has demonstrated that this
is somewhat possible using data with a coarservspatial

resolution. Metrics based on the cumulative NDVI curve and
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GDD were able to classify transects with unknown membership
into the appropriate categories the majority of the time.
Although the accuracy of the classifications were only in
the 60% range, this is respectable considering the spectral
similarity‘of the lifeforms at any single point in time.
This is also significant given the 30 meter spatial
resolution of the images used in analysis, and the
associated amount of biotic material not fitting the classes
of C, por C, which was undoubtedly contained in some of the
pixels.

Transects that contained little or no material other
than C; and C, were generally more often classified
correctly than those sites with additional biotic material
not fitting these classes. It is not clear how much of |
these additional materials need to bé present in a
particular pixel in order for classification acburacy to
suffer. However, there does appear to be a link between
classification accuracy and the amount of biotic matter that
is neither C, or C,.

Another factor which could have caused some analytical
problems is the quality of the species composition data that
were used to generate classification coefficienfs for the
discriminant analysis, and how‘closely this represented the

actual situation on the ground. Although these data were
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collectéd with supervision from the Division of Biology,
there are no known quality control measures that were
undertaken to ensure the data is accurate. Furthermore, the
fact that the transects subset from the composited image
only approximated the actual collection transects on the
grouhd could cause some additional inconsistencies in the
results.

A possible way to improve on the uncertéinties
associated with the location of the transects is to utilize
the innovative technology of the Global Positioning System
(GPS). A GPS could be taken to the fiéld and exact
boundaries of the transects could be determined.
Unfortunately, this information was not available for this
project due tQ certain limitations. However, the geocoding
of all transect locations using GPS is currently underway.

This report has demonstrated the effectiveness of using
satellite images and metrics based on temporal trajectories
of NDVI to determine relative amounts of C; and C,
photosynthetic pathways. The ability to distinguish these
lifeforms using satellite imagery is important if this is to
become an effective technique for moniforing the condition
of these environments on a widespread scale. The results
presented here seem a to be a promising indicator that this

is possible.
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